
PLTL Lesson Plan Last Edited: August 19, 2015

CNS#1042341

Topic: Recursion

Activity Guidelines

Group Size: 3

Method of Assigning Students: Count the number of students in the class, divide by 3, count off

from 1 to the quotient, and group identical numbers.

Materials:

 Handout (one copy per group) with questions to be answered at the end of the session

Roles:

 Coordinator/Leader: Clarifies goals and objectives, allocates roles for each team member

and divides the tasks within the group.

 Monitor/Evaluator: Person designed to evaluate the different ideas to approach the

problem and make an accurate judgment of the most beneficial option.

 Implementer: Person in charge to transform discussions and ideas into a technical

solution for the given problem.

Individual Accountability: Each team member gets assigned a specific role in order to ensure

every student within a team participates and contributes to reach a solution for each problem

presented in the activity.

Activity Summary

Students are assigned 4 problems to be solved both iteratively and recursively. By finding a

solution to the problem iteratively, students will learn to transform iterative solutions into

recursive methods.

a) Create a method to calculate the factorial of n number.

b) Create a method that outputs the Fibonacci numbers up to n number.

c) Create a method to print the elements on a Linked List.

d) Create a method to search for an element on a Linked List.

PLTL Lesson Plan Last Edited: August 19, 2015

CNS#1042341

ELEMENTARY DATA STRUCTURES

PEER SESSION

Recursion

1. Create a method factorial(int n) that returns an integer containing n’s factorial (that is n

x n-1 x … x 3 x 2 x 1)

a. Using an iterative method. (with loops)

public static long factorial(int num) {

 long result = 1;

 if(num == 0) {

 return 1;

 }

 else {

 for(int i = 2; i <= num; i++) {

 result *= i;

 }

 return result;

 }

}

b. Using a recursive method. (without loops)

public static long factorial(long number) {

 if (number <= 1) // test for base case

 return 1; // base cases: 0! = 1 and 1! = 1

 else

 // recursion step

 return number * factorial(number - 1);

 }

}

2. Create a recursive method fibonacci(int n) giving you Fn that is the nth Fibonacci number,

note that Fn=Fn-1+Fn-2 , F1=1 and F2=1.

a. Iterative method

public int fibonacci(int n) {

 if(n == 0)

 return 0;

 else if(n == 1)

 return 1;

 else

 return fibonacci(n - 1) + fibonacci(n - 2);

}

PLTL Lesson Plan Last Edited: August 19, 2015

CNS#1042341

b. Recursive method

public int fibonacci(int n) {

 int x = 0, y = 1, z = 1;

 for (int i = 0; i < n; i++) {

 x = y;

 y = z;

 z = x + y;

 }

 return x;

 }

3. Create a method to print out all the elements contained in a Linked List.

a. Iterative method

public String toString() {
 Node current = head.getNext();
 String output = "";
 while (current != null) {
 output += current.getData().toString() + " ";
 current = current.getNext();
 }
 return output;
 }

b. Recursive method

 public void printRecursive(Node head) {

 if (head!=null)

 System.out.println(head.getData().toString() + " ");

 if(head.getNext()!=null)

 printRecursive(head.getNext());

 else

 return;

 }

4. Create a method to search for an element in a Linked List.

a. Iterative method

public boolean search(int element) {
 Node current = head.getNext();
 String e = Integer.toString(element);
 while (current != null) {
 if(current.getData().toString().equals(e))
 return true;
 current = current.getNext();

PLTL Lesson Plan Last Edited: August 19, 2015

CNS#1042341

 }
 return false;
 }

b. Recursive method

public void searchRecursively(Node head, int element) {

 String e = Integer.toString(element);

 if (head!=null) {

 if(head.getData().toString().equals(e)) {

 System.out.println("The element is in the list");

 return;

 }

 }

 if(head.getNext()!=null){

 searchRecursively(head.getNext(), element);

 }

 else {

 System.out.println("The element is not in the list");

 return;

 }

 }

